Post

强化学习框架: 高并发强化学习训练框架

强化学习框架: 高并发强化学习训练框架

最近整理了一下未来目标达成的强化学习框架的整体架构

系统整体架构图

graph TB
    subgraph "Python Training Side"
        L[Learner<br/>PyTorch训练器]
        RB[ReplayBuffer<br/>经验回放缓冲区]
        WS[Weight Server<br/>权重服务器]
    end
    
    subgraph "Go Simulation Side"
        subgraph "ENV"
            C1[Collector-1]
            C2[Collector-2]
            CN[Collector-N]
            
            E1[Env-1<br/>仿真环境]
            E2[Env-2<br/>仿真环境]
            EN[Env-N<br/>仿真环境]
        end
        MS[Metrics Server<br/>指标服务器]
        WC[Weight Redis<br/>权重缓存]

    end
    
    L -->|同步权重| WS
    WS -->|权重分发| WC
    
    C1 --> E1
    C2 --> E2
    CN --> EN
    
    WC --> C1
    WC --> C2
    WC --> CN
    
    C1 -->|经验数据| RB
    C2 -->|经验数据| RB
    CN -->|经验数据| RB
    
    E1 --> MS
    E2 --> MS
    EN --> MS
    
    style L fill:#ffeb3b
    style RB fill:#4caf50
    style C1 fill:#2196f3
    style C2 fill:#2196f3
    style CN fill:#2196f3
    style E1 fill:#ff9800
    style E2 fill:#ff9800
    style EN fill:#ff9800

flow 流程图

flowchart TD
    subgraph "Control Flow"
        CF1[Episode开始] --> CF2[权重同步]
        CF2 --> CF3[环境初始化]
        CF3 --> CF4[推理执行]
        CF4 --> CF5[动作执行]
        CF5 --> CF6{Episode结束?}
        CF6 -->|否| CF4
        CF6 -->|是| CF7[上传经验]
        CF7 --> CF1
    end
    subgraph "Data Flow"
        DF1[训练权重] --> DF2[权重缓存]
        DF2 --> DF3[推理引擎]
        DF3 --> DF4[动作输出]
        DF4 --> DF5[环境状态]
        DF5 --> DF6[奖励计算]
        DF6 --> DF7[经验存储]
        DF7 --> DF8[ReplayBuffer]
        DF8 --> DF9[模型训练]
        DF9 --> DF1
    end
    
    style CF1 fill:#e1f5fe
    style CF7 fill:#e8f5e8
    style DF1 fill:#fff3e0
    style DF8 fill:#fce4ec

##

This post is licensed under CC BY 4.0 by the author.